Zelenium: Browser Testing for Zope

presented to the
2005 North American Plone Symposium
2005/07/21

Tres Seaver
Palladion Software
tseaver @palladion.com

I Another Testing Framework?

e Gaps in coverage
I o Different audiences need different kinds of
tests

Current Test Coverage

Unit tests exercise components in isolation
Integration tests exercise “assemblies”
Functional tests exercise “slices” of the
system, according to usage

System tests exercise the configured system
as a whole

The further we go “up”, the poorer our
coverage (generally)

I Qui custodiet custodiens?

o Tests verity system functionality
I — who verifies tests?

* Nearer the “surface” of an application, user
verification becomes more important

o Traditional spellings are aimed at
programmers, not users

I Browser Tests Address Gaps

 Web applications are increasingly pushing

I more behavior into the browser

- “AJAX” (Javascript + XML/RPC)
- “Deferred page assembly”

e Traditional testing cannot exercise this
functionality well

o Server-side testing which “emulates”
browsers may vyield fals confidence

I Other Advantages

o Cross-browser compatibility tests
- Browsers are a major source of bugs!
e Test specifications users understand
- Shared understanding increases acceptance,
productivity
- “FIT” project results
e Bug reporting
- Blue sky: record user reproducing bug, generate
test case

I Walkthrough: Testing the CMF

e http://localhost:8081/cmf_tests/workflow

I Navigating the Selenium Ul

e “Dashboard” consisting of
I — Test Suite <iframe>
— Test Case <iframe>
— Control Panel <form>
- “Application-under-Test” (AUT) <iframe>

I Anatomy of a Test Case

e Each test case is a simple HTML page,

containing a 3-column table
— First row is ignored (useful for documentation)

- Subsequent rows consist of triples:
VERB | TARGET | DATA
- Each row is either an “action” or an “assertion”

e Triples are spelled using a FIT-inspired
language, “Selenese”

Selenese Action Verbs

click, clickAndWait
— target may be any “clickable” item
select, selectAndWait
— target is normally a <select> widget
type
— target is an <input> or <textarea> widget
open
- target is a URL (as if typed in location bar)
— Avoid overuse: users don't type there!

Selenese Assertion Verbs

verify TextPresent, verify TextNotPresent
verifyElementPresent,
verifyElementNotPresent

'assert™ variants halt the test on failure:
'verify™ variants record failure and continue

I Generating Test Cases
o tcpwatch records “wire-level” information
— Artifacts make “intent” of user hard to infer
— Ideally, browser-based “gesture” recording might
help

e Zelenium provides generator.py
- Generated test cases often require large-scale
fixups

I Authoring Test Cases
e Authoring tests can be specification
- “Fleshing out” use cases
I e Simple HTML format, easy to manage in text
editor

— or with tools like Composer

I Wrapping Selenium for Zope

 Maik Roeder's Plone wrapper
- Selenium core application mapped to skins
I — Designed to ship with Plone
— Favors test cases generated from Python
e Zelenium
— No Plone / CMF dependency
- CMF will have them soon

— Favors “static” test cases
e don't want to test the tests!

I Zelenium Features

e Allows prototyping test cases in the ZMI
I » Generates “test suite” tables
e Allows recursive test suites
e Allows including test cases from the
filesystem

I Zelenium Features (cont'd)

o Capture results, including server-side data
I - "2auto=true' query string trigger
— Results captured in an object which generates
summary report
* (Generate test cases from tcpwatch logs
— Generated versions often need tweaking
o Export test suites as ZIP files
— Optionally, include Selenium core

Setting up the Test Environment

Install Zelenium / ExternalEditor products
Add Zuite instance

Populate with File instances

Point at filesystem using property

I Issue: Avoiding Test Artifacts

e “Throwaway” site
- But may need some “known state”
I * Teardown code
- Messy, easy to omit something
 DemoStorage can provide best of both:

— Underlying storage can have “known state”
- Teardown is simply restarting appserver

I Configuring DemoStorage

 Wrap <demostorage> around normal storage
- <zodb_db mai n>
nount - poi nt /
<denost or age>
<zeocl 1 ent >
server | ocal host: 8100
storage 1
nanme zeost or age
var $I NSTANCE/ denp_var
</ zeocl i ent>
</ denost or age>
</ zodb_db>

I DemoStorage and ZEO
o “ZEQO: don't leave home without it”
— allows you to make persistent changes to
underlying storage
— debugging on the fly

- Zope 2.7.6 / ZODB3 3.2.8 fixes bug in
DemoStorage-around-ZEO interaction

Resources

“Selenium site”, http://selenium.thoughtworks.com
“Zelenium product”,
http://www.zope.org/Members/tseaver/Zelenium

“FIT: Framework for Integrated Test”,
http://fit.c2.com/wiki.cgi
Tres Seaver, tseaver@palladion.com

