
Zelenium: Browser Testing for Zope

presented to the
2005 North American Plone Symposium

2005/07/21

Tres Seaver
Palladion Software

tseaver@palladion.com

Another Testing Framework?

● Gaps in coverage
● Different audiences need different kinds of

tests

Current Test Coverage

● Unit tests exercise components in isolation
● Integration tests exercise “assemblies”
● Functional tests exercise “slices” of the

system, according to usage
● System tests exercise the configured system

as a whole
● The further we go “up”, the poorer our

coverage (generally)

Qui custodiet custodiens?

● Tests verify system functionality
– who verifies tests?

● Nearer the “surface” of an application, user
verification becomes more important

● Traditional spellings are aimed at
programmers, not users

Browser Tests Address Gaps

● Web applications are increasingly pushing
more behavior into the browser
– “AJAX” (Javascript + XML/RPC)
– “Deferred page assembly”

● Traditional testing cannot exercise this
functionality well

● Server-side testing which “emulates”
browsers may yield fals confidence

Other Advantages

● Cross-browser compatibility tests
– Browsers are a major source of bugs!

● Test specifications users understand
– Shared understanding increases acceptance,

productivity
– “FIT” project results

● Bug reporting
– Blue sky: record user reproducing bug, generate

test case

Walkthrough: Testing the CMF

● http://localhost:8081/cmf_tests/workflow

Navigating the Selenium UI

● “Dashboard” consisting of
– Test Suite <iframe>
– Test Case <iframe>
– Control Panel <form>
– “Application-under-Test” (AUT) <iframe>

Anatomy of a Test Case

● Each test case is a simple HTML page,
containing a 3-column table
– First row is ignored (useful for documentation)
– Subsequent rows consist of triples:

VERB | TARGET | DATA
– Each row is either an “action” or an “assertion”

● Triples are spelled using a FIT-inspired
language, “Selenese”

Selenese Action Verbs

● click, clickAndWait
– target may be any “clickable” item

● select, selectAndWait
– target is normally a <select> widget

● type
– target is an <input> or <textarea> widget

● open
– target is a URL (as if typed in location bar)
– Avoid overuse: users don't type there!

Selenese Assertion Verbs

● verifyTextPresent, verifyTextNotPresent
● verifyElementPresent,

verifyElementNotPresent
● 'assert*' variants halt the test on failure;

'verify*' variants record failure and continue

Generating Test Cases

● tcpwatch records “wire-level” information
– Artifacts make “intent” of user hard to infer
– Ideally, browser-based “gesture” recording might

help
● Zelenium provides generator.py

– Generated test cases often require large-scale
fixups

Authoring Test Cases

● Authoring tests can be specification
– “Fleshing out” use cases

● Simple HTML format, easy to manage in text
editor
– or with tools like Composer

Wrapping Selenium for Zope

● Maik Roeder's Plone wrapper
– Selenium core application mapped to skins
– Designed to ship with Plone
– Favors test cases generated from Python

● Zelenium
– No Plone / CMF dependency
– CMF will have them soon
– Favors “static” test cases

● don't want to test the tests!

Zelenium Features

● Allows prototyping test cases in the ZMI
● Generates “test suite” tables
● Allows recursive test suites
● Allows including test cases from the

filesystem

Zelenium Features (cont'd)

● Capture results, including server-side data
– '?auto=true' query string trigger
– Results captured in an object which generates

summary report
● Generate test cases from tcpwatch logs

– Generated versions often need tweaking
● Export test suites as ZIP files

– Optionally, include Selenium core

Setting up the Test Environment

● Install Zelenium / ExternalEditor products
● Add Zuite instance
● Populate with File instances
● Point at filesystem using property

Issue: Avoiding Test Artifacts

● “Throwaway” site
– But may need some “known state”

● Teardown code
– Messy, easy to omit something

● DemoStorage can provide best of both:
– Underlying storage can have “known state”
– Teardown is simply restarting appserver

Configuring DemoStorage

● Wrap <demostorage> around normal storage
– <zodb_db main>
 mount-point /
 <demostorage>
 <zeoclient>
 server localhost:8100
 storage 1
 name zeostorage
 var $INSTANCE/demo_var
 </zeoclient>
 </demostorage>
</zodb_db>

DemoStorage and ZEO

● “ZEO: don't leave home without it”
– allows you to make persistent changes to

underlying storage
– debugging on the fly
– Zope 2.7.6 / ZODB3 3.2.8 fixes bug in

DemoStorage-around-ZEO interaction

Resources

● “Selenium site”, http://selenium.thoughtworks.com
● “Zelenium product”,

http://www.zope.org/Members/tseaver/Zelenium
● “FIT: Framework for Integrated Test”,

http://fit.c2.com/wiki.cgi
● Tres Seaver, tseaver@palladion.com

